Welcome to Kaifeng Wu Research Group

欢 迎 来 到 吴 凯 丰 研 究 组



78. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots.

Han Y, Liang W, Lin X, Li Y, Sun F, Peter C. Sercel*, Wu K*.

Nature Materials, 2022, 21(11): 1282-1289.


77. Spin-enabled photochemistry using nanocrystal-molecule hybrids.

Liu M, Wang J, Liang G, Luo X, Zhao G, He S, Wang L, Liang W, Li J, Wu K*.

Chem, 2022, 8(6): 1720-1733.


76. Low-Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations.

Nie C, Lin X, Zhao G, Wu K*.

Angewandte Chemie International Edition, 2022, 61(49): e202213065.


75. Energy-Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition.

Liu M, Xia P, Zhao G, Nie C, Gao K, He S, Wang L, Wu K*.

Angewandte Chemie International Edition, 2022, 61(35): e202208241.


74. Excitonic Bloch–Siegert shift in CsPbI3 perovskite quantum dots.

Li Y, HanY, Liang W, Zhang B, Li Y, Liu Y, Yang Y, Wu K*, Zhu J*.

Nature Communications, 2022, 13(1): 5559.


73. ZnSe/ZnS Core/Shell Quantum Dots as Triplet Sensitizers toward Visible-to-Ultraviolet B Photon Upconversion.

Lin X, Chen Z, Han Y, Nie C, Xia P, He S, Li J, Wu K*.

ACS Energy Letters, 2022, 7(3): 914–919.


72. Sensitizing phosphorescent and radical emitters via triplet energy translation from CsPbBr3 nanocrystals.

Chen Z, Liang G*, Wu K*.

Journal of Materials Chemistry C, 2022, 10(12): 4697-4704.


71. Orbital Mixing between Colloidal Quantum Dots and Surface-Bound Molecules.

Zhao G, Ma W, Yu S, Zhang J, Wu K*.

The Journal of Physical Chemistry Letters, 2022, 13(51): 11892-11898.


70. Low-Loss, High-Transparency Luminescent Solar Concentrators with a Bioinspired Self-Cleaning Surface.

Li X, Qi J, Zhu J, Jia Y, Liu Y, LiY, Liu H, Li G, Wu K*.

The Journal of Physical Chemistry Letters, 2022, 13(39): 9177-9185.


69. Entropy-Powered Endothermic Energy Transfer from CsPbBr3 Nanocrystals for Photon Upconversion.

He S, Han Y, Guo J, Wu K*.

The Journal of Physical Chemistry Letters, 2022, 13(7): 1713-1718.


68. Structural Disorder as the Origin of Optical Properties and Spectral Dynamics in Squaraine Nano-Aggregates.

Robin Bernhardt*, Marìck Manrho, Jennifer Zablocki, Lukas Rieland, Arne Lützen, Manuela Schiek, Klaus Meerholz, Jingyi Zhu*, Thomas L. C. Jansen, Jasper Knoester, and Paul H. M. van Loosdrecht*.

Journal of the American Chemical Society, 2022, 144(42): 19372–19381.


67. Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution.

Li C, Liu J, Li H*, Wu K, Wang J*, Yang Q*.

Nature Communications, 2022, 13(1): 2357.


66. Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐assembled Naphthalimide Nanoribbons.

Lin H1, Wang J1, Zhao J, Zhuang Y, Liu B, Zhu Y, Jia H, Wu K, Shen J, Fu X, Zhang X*, Long J*.

Angewandte Chemie International Editions, 2022, 134(12): e202117645(1-6).


65. Low-Threshold Blue Quasi-2D Perovskite Laser through Domain Distribution Control.

Wang C, Dai G*, Wang J*, Cui M, Yang Y, Yang S, Qin C, Chang S, Wu K, Liu Y, Zhong H*.

Nano Letters, 2022, 22(3): 1338–1344.


64. Energy funneling and charge separation in CdS modified with dual cocatalysts for enhanced H2 generation.

Zhang M, Qin C, Sun W, Dong C, Zhong J, Wu K, Ding Y*.

Chinese Journal of Catalysis, 2022, 43 (7): 1818-1829.

版权所有 © 中国科学院大连化学物理研究所 本站内容如涉及知识产权问题请联系我们 备案号:辽ICP备05000861号 辽公网安备21020402000367号